Brief information about the project

Name of the project	AP19677384 "Development and research of the dynamics of a gas centrifuge on magnetic bearings with nonlinear
Relevance	characteristics and a control system".Modern gas centrifuges used in the nuclear industry for
Kelevanee	uranium enrichment are just one of many examples of non-
	linear magnetic bearing rotor systems. Like any dynamic
	systems, rotary machines are subject to various kinds of
	vibrations. Due to the non-linear dependences of magnetic forces, magnetic bearings are non-linear supports. The idea
	of the project is to develop a generalized dynamic model
	of a nonlinear rotor system on magnetic bearings and to
	development an optimal control algorithm that provides a
	low level of system vibrations, on the basis of which a new
	gas centrifuge design will be created.
Purpose	Development of a generalized dynamic model of a
	nonlinear rotor system on magnetic bearings and a method for its study. Development of a control algorithm for the
	"rotor-magnetic bearings-foundation" system, providing a
	low level of vibration. Development of a software package.
	Creation of a new design of a gas centrifuge.
Objectives	To achieve the formulated goal, the following tasks are
	solved:
	• development of a dynamic model of the "rotor-
	magnetic bearings-foundation" system to study the oscillations of the system;
	• development of a method for studying the natural
	nonlinear oscillations of the rotor system;
	• determination of criical frequencies and calculation of amplitudes of natural oscillations;
	 development of a method for studying forced nonlinear
	oscillations of the system;
	• determination of resonant frequencies and calculation
	of amplitudes of forced oscillations;
	• carrying out parametric analysis;
	• development of a control algorithm to provide a low
	level of natural and forced oscilations based on feedback
	methods, such as Extended Kalman Filter (EKF), $H\infty$ - control (in case of random vibrations), Linear-Quadratic
	Regulator (LQR) for the nonlinear system, theory of
	Lyapunov functions;
	 development of automated modeling procedures;
	• a comparative analysis with the experimental results of
	other authors and with similar theoretical analytical and
	numerical calculations for the approbation and verification
	of the developed methods, control algorithm and
	automated procedures; • designing of a new high performance and dynamically
	• designing of a new high-performance and dynamically more stable gas centrfuge by taking into account the
	mobility of the foundation and the nonlinearity of the
	supports.

Expected and achieved results	The tools of the nucleon industry taking into account its
Expected and achieved results	The tasks of the nuclear industry taking into account its prospects and minimal damage to the environment during
	normal operation have always been of particular
	importance in the economy of any country. At the moment,
	there are about 440 nuclear power plants operating on
	uranium with an enrichment index of ~3-5%, which
	produce approximately 20% of the world's electricity. This
	indicator, due to environmental pollution by hydrocarbons,
	will only grow. At present, gas centrifuges have the highest
	enrichment factor. Increasing the indicator of the kinetic
	enrichment technology by selecting the optimal rigidity
	and inertial characteristics based on the analytical
	parametric analysis of the developed and solved
	generalized nonlinear dynamic model is economically
	more favorable than other enrichment technologies such as
	laser isotope separation methods, for example, MLIS,
	CRISLA, SILEX, AVLIS, etc.
	The expected social and economic effect from the results
	of the project is provided by the possibility of increasing
	the enrichment rate of gas centrifuges (for example, the
	actual separation factors of gas diffusion plants is ~ 1.001,
	for gas centrifuges ~ 1.09), which will bring huge
	economic profit, in addition, the creation and operation of
	gas centrifuges in Kazakhstan will contribute to solution of
	such problems as, for example, environmental pollution,
	energy shortages, such social problems as creating new
	jobs, etc.
Research team members with	1. Kydyrbekuly Almatbek Balgabekovich, DSc., H – 3,
their identifiers (Scopus Author	ORCID: 0000-0002-8345-7334, Scopus author
ID, Researcher ID, ORCID, if	ID: 55779558700.
available) and links to relevant	2. Julius Kaplunov, DSc., prof. (UK, Keele University), H
profiles	– 26; ORCID: 0000-0001-7505-4546, Scopus Author ID:
	6701814679.
	3. Rakhmetolla Abdizhalel, PhD, acc.prof., SRI of
	Mathematics and Mechanics of Farabi University, Lead
	Research Scientist.
	4. Khajiyeva Lelya, DSc., prof., H – 5, ORCID: 0000-
	0002-2565-3409, Scopus author ID: 55779888800.
	5. Ibrayev Gulama-Garip Alisher, PhD, H – 3; ORCID:
	0000-0001-5000-0023, Scopus Author ID: 57190969416.
	6. Zhengis Beksultan, Undergraduate Student of Farabi
	University.
	7. Efendiyev Said, PhD candidate of Farabi University.
	8. Rayeva Kuralay, SRI of Mathematics and Mechanics
	of Farabi University, Research Scientist.
List of publications with links to	Kydyrbekuly A., Zhauyt A., Ibrayev G. G. A. Parametric
them	Analysis of Nonlinear Oscillations of the "Rotor–Weakly
	Conductive Viscous Fluid–Foundation" System under the
	Action of a Magnetic Field //Applied Sciences. – 2023. –
	V. 13. – No. 21. – Р. 12089. (Scopus, Процентиль: 75%,
	SJR = 0.492, CiteScore = 4.5, Q2, DOI:
	https://doi.org/10.3390/app132112089).

Patents -		
	Patents	-